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2.3 Turbulence: dimensional analysis and beyond

kinetic equation. We conclude by noting that this discussion, which began with
the TPM, comes full circle when one considers the effect of nonlinear mode
coupling on processes of relaxation and transport. In particular, mode localized
coupling produces phase space density vortexes or eddies in the phase space fluid.
These phase space eddies are called granulations, and resemble a macroparticle
(Lynden-Bell, 1967; Kadomtsev and Pogutse, 1970; Dupree, 1970; Dupree, 1972;
Diamond ef al., 1982). Such granulations are associated with peaks in the phase
space density correlation function. Since these granulations resemble macropar-
ticles, it should not be too surprising that they drive relaxation via a mechanism
similar to that of dressed test particles. Hence, the mean field equation for (f)
in the presence of granulations has the structure of a Balescu-Lenard equation,

although of course its components differ from those discussed in this chapter.

2.3 Turbulence: dimensional analysis and beyond — revisiting the theory
of hydrodynamic turbulence

So, naturalists observe, a flea
Hath smaller fleas that on him prey,
And those have smaller yet to bite "em,
And so proceed ad infinitum:
Thus every poet in his Kind,
Is bit by him that comes behind.
(Jonathan Swift, from “On poetry: a Rhapsody™)

We now turn to our second paradigm, namely Navier—Stokes turbulence, and the
famous Kolmogorov cascade through the inertial range. This is rhe classic example
of a system with dynamics controlled by a self-similar spectral flux. It constitutes
the ideal complement to the TPM, in that it features the role of transfer, rather
than emission and absorption. We also discuss related issues in particle dispersion,

two-dimensional turbulence and turbulent pipe flows.

2.3.1 Key elements in Kolmogorov theory of cascade
2.3.1.1 Kolmogorov theory

Surely everyone has encountered the basic ideas of Kolmogorov’s theory of high
Reynolds number turbulence! (McComb, 1990; Frisch, 1995: Falkovich et al.,
2001: Yoshizawa et al., 2003). Loosely put, it consists of empirically motivated
assumptions of:
(1) spatial homogeneity — i.e. the turbulence is uniformly distributed in space:
(2) isotropy — i.e. the turbulence exhibits no preferred spatial orientation;
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Fig. 2.12. Basic cartoon explanation of the Richardson—-Kolmogorov cascade.
Energy transfer in Fourier—space (a), and real space (b).

self-similarity —i.e. all inertial range scales exhibit the same physics and are equivalent.

(98]

Here “inertial range” refers to the range of scales £ smaller than the stirring scale g
but larger than the dissipation scale (€4 < £ < {p):

(4) locality of interaction — i.e. the (dominant) nonlinear interactions in the inertial range
are local in scale; that is, while large scales advect small scales, they cannot distort
or destroy small scales, only sweep them around. Inertial range transfer occurs via
like-scale straining, only.

Assumptions (1)—(4) and the basic idea of an inertial range cascade are sum-

marized in Figure 2.12. Using assumptions (1)-(4), we can state that energy

throughput must be constant for all inertial range scales, so.,
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Fig. 2.13. Basic idea of the Richardson dispersion problem. The evolution of the
separation of the two points (black and white dots) / follows the relation d/ /dt = v
(a). If the advection ficld scale exceeds /, the particle pair swept together, so / is
unchanged (b). If the advection field scale is less than /, there is no effect (except
diffusion) on particle dispersion (c).

which are the familiar K41 results. The dissipation scale £4 is obtained by balanc-
. . . /2 2 /3 . . . . . 2" -
ing the eddy straining rate €'/? /£?/3 with the viscous dissipation rate v/#? to find
the Kolmogorov microscale,

/A4

i"d 2 l,_\/'-‘/e I/‘—y. ( 6)

o
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2.3.1.2 Richardson theory of particle separation

A related and important phenomenon, which may also be illuminated by scaling
arguments, is how the distance between two test particles grows in time in a tur-
bulent flow. This problem was first considered by Louis Fry Richardson, who was
stimulated by observations of the rate at which pairs of weather balloons drifted
apart from one another in the (turbulent) atmosphere (Richardson, 1926). Consis-
tent with the assumption of locality of interaction in scale, Richardson postulated
that the distance between two points in a turbulent flow increases at the speed set
by the eddy velocity on scales corresponding (and comparable) to the distance of
separation (Fig. 2.13). Thus, for distance £,

de .
— = vy(0) (2.57a)
dt
so using the K41 results (2.55b) gives,
e(r) ~ €232, (2.57b)

a result that Richardson found to be in good agreement with observations. Notice
. . ‘ o . 2/
that the distance of separation grows super-diffusively, i.e. £(t) ~ t>/<, and not
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~ t1/2 as for the textbook case of Brownian motion. The super-diffusive character
of £(t) is due to the fact that larger eddies support larger speeds, so the separa-
tion process is self-accelerating. Note too, that the separation grows as a power
of time, and not exponentially, as in the case of a dynamical system with positive
Lyapunov exponent. This is because for each separation scale £, there is a unique
corresponding separation velocity v(£), so in fact there is a continuum of Lya-
punov exponents (one for each scale) in the case of a turbulent flow. Thus, £(7) is
algebraic, not exponential! By way of contrast, the exponential rate of particle pair
separation in a smooth chaotic flow is set by the largest positive Lyapunov expo-
nent. We also remark here that while intermittency corrections to the K41 theory,
based upon the notion of a dissipative attractor with a fractal dimension less than
three, have been extensively discussed in the literature, the effects of intermittency
in the corresponding Richardson problem have received relatively little attention.
This is unfortunate, since, though it may seem heretical to say so, the Richardson
problem is, in many ways, more fundamental than the Kolmogorov problem, since
unphysical effects due to sweeping by large scales are eliminated by definition
in the Richardson problem. Moreover, the Richardson problem is of interest to
calculating the rate of turbulent dispersion and the lifetime of particles or quasi-
particles of turbulent fluid. An exception to the lack of advanced discussion of the
Richardson problem is the excellent review article by Falkovich, Gawedski and
Vergassola (2001).

2.3.1.3 Stretching and generation of enstrophy

Of course, ‘truth in advertising’ compels us to emphasize that the scaling argu-
ments presented here contain no more physics than what was inserted ab initio. To
understand the physical mechanism underpinning the Kolmogorov energy cascade,
one must consider the dynamics of structures in the flow. As is well known, the
key mechanism in 3D Navier-Stokes turbulence is vortex tube stretching, shown
schematically in Figure 2.14. There, we see that alignment of strain Vv with vor-
ticity @ (i.e. @ - Vv # 0) generates small-scale vorticity, as dictated by angular
momentum conservation in incompressible flows. The enstrophy (mean squared
vorticity) thus diverges as,

(@) ~ /v, (2.58)

for v — 0. This indicates that enstrophy is produced in 3D turbulence, and sug-
gests that there may be a finite time singularity in the system, an issue to which
we shall return later. By finite time singularity of enstrophy, we mean that the
enstrophy diverges within a finite time (i.e. with a growth rate which is faster
than exponential). In a related vein, we note that finiteness of € as v — 0 con-
stitutes what is called an anomaly in quantum field theory. An anomaly occurs




2.3 Turbulence: dimensional analysis and beyond 55

Li=w, r?
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Fig. 2.14. The mechanism of enstrophy generation by vortex tube stretching. The
vortex tube stretching vigorously produces small scale vorticity.

when symmetry breaking (in this case, breaking of time reversal symmetry by
viscous dissipation) persists as the symmetry breaking term in the field equation
asymptotes to zero. The scaling (w?) ~ 1/v is suggestive of an anomaly. So is the
familiar simple argument using the Euler vorticity equation (for v — 0),

d
e S Vo, (2.59a)
dr
d
—w? ~ . (2.59b)
dr

Of course, this “simple argument” is grossly over-simplified, and incorrect.! In two
dimensions @ - Vv = 0, so enstrophy is conserved. As first shown by Kraichnan,
this necessitates a dual cascade, in which enstrophy forward cascades to small
scales, while energy inverse cascades to large scales. The mechanism by which the
dual conservation of energy and enstrophy force a dual cascade in 2D turbulence

is discussed further later in this chapter.

2.3.1.4 Fundamental hypothesis for K41 theory

As elegantly and concisely discussed by U. Frisch in his superb monograph
“Turbulence — The Legacy of A.N. Kolmogorov” (Frisch, 1995), the K41 theory
can be systematically developed from a few fundamental hypotheses or postulates.
Upon proceeding, the cynical reader will no doubt conclude that the hypotheses
(H1)—(H4) stated below are simply restatements of assumptions (1)—(4). While it
is difficult to refute such a statement, we remark here that (H1)—(H4), are indeed

! In fact, a mathematical proof of finite time singularity of enstrophy remains an elusive goal, with an as-yet-
unclaimed Clay prize of $1,000,000. (2007)

T
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of value, both for their precise presentation of Kolmogorov’s deep understanding
and for the insights into his thinking that they provide. As these postulates involve
concepts of great relevance to other applications, we revisit them here in prepara-
tion for our subsequent discussions. The first fundamental hypothesis of the K41
theory is:

(H1) As the Reynolds number R, — o0, all possible symmetries of the
Navier-Stokes equation, usually broken by the means of turbulence initiation
or production, are restored in a statistical sense at small scales, and away from

boundaries.

The reader should note that (H1) is a deceptively simple, and fundamentally quite
profound hypothesis! The onset or production of turbulence nearly always involves
symmetry breaking. Some examples are:

(i) shear flow turbulence: the initial Kelvin—Helmholtz instability results from breaking
of translation and rotation symmetry.
(ii) turbulence in a pipe with a rough boundary: the driving pressure drop, the wall and
roughenings break symmetry.
(iii) turbulence in a flushing toilet: the multiphase flow has finite chirality and is non-

stationary.

Naively, one might expect the turbulent state to have some memory of this broken
symmetry. Indeed, the essence of B-model and multi-fractal theories of intermit-
tency is the persistence of some memory of the large, stirring scales into the
smallest inertial range scales. Yet, the universal character of K41 turbulence fol-
lows directly from, and implies a restoration of, initially broken symmetry at small
scales. Assumptions (i) and (ii) really follow from hypothesis (H1).

The second K41 hypothesis is:

(H2) Under the assumptions of (H1), the flow is self-similar at small scales and
has a unique scaling exponent A, such that,

v(r. 1) = M@, o).

Here, v(r, £) refers to the velocity wavelet field at position r and scale £. Clearly,
(H2) implies assumptions (3) and (4), concerning self-similarity and locality of
interaction.

Hypotheses (H1) and (H2) pertain to flow structure and scaling properties. Two

additional postulates pertain to dynamics. These are:

(H3) Given the assumptions of (H1) and (H2), turbulent flow has a finite. non-

vanishing mean rate of dissipation per unit mass €, as v — 0,
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and

(H4) In the limit of high but finite R,, all small-scale statistical properties are
uniquely and universally determined by € and ¢.

Hypothesis (H3) is tacitly equivalent to stating that an anomaly exists in K41 tur-
bulence. Note that € is independent of v. However, notice also that €, the “mean
rate of dissipation per unit mass” is not related to physical, calculable quantities,
and is left as a more-than-slightly ambiguous concept. Introduction of fluctua-
tions (which reiax the statement ‘uniquely’ in (H4) in the local dissipation rate
(which in reality are usually associated with localized dissipative structures such
as strong vortex tubes) and of a statistical distribution of dissipation, leads down
the path to intermittency modelling, a topic which is beyond the scope of this book.
The reader is referred to Frisch (1995), for an overview. and to seminal references
such as Frisch et al. (1978), She and Leveque (1994), Falkovich et al. (2001). and
others for an in depth discussion of intermittency modifications to the K41 the-
ory. Finally, hypothesis (H4) relates all statistics to € and €. the only two possible
relevant parameters, given (H1), (H4).

2.3.2 Two-dimensional fluid turbulence

In this subsection, we briefly summarize certain key features of the theory of
two-dimensional (2D) fluid turbulence. Our attention will focus upon the dual cas-
cades of energy and enstrophy in 2D turbulence, the dispersion of particle pairs
(i.e., the Richardson problem), and on the emergence of long-lived coherent struc-
tures in turbulent 2D flow. Two-dimensional fluid dynamics has many features
in common with those of magnetized plasmas, and so is of great interest to us
(Hasegawa, 1985). The 2D fluid turbulence is a critically important paradigm for
plasma turbulence. The literature of 2D turbulence theory and experiment is vast,
so here we survey only the most basic and fundamental elements of this interesting
story.

2.3.2.1 Forward and inverse cascade
As we have already discussed, the defining feature of 2D fluid dynamics is the
absence of vortex tube stretching (i.e. @ - Vv = 0). Thus, vorticity is conserved

locally, up to viscous dissipation, i.e.

_10)_}_1; Vw_ 1»v2w:() ‘2()()&)

at
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or, representing v using a stream function, v = V¢ x Z (where Z is the coordinate
in the direction of uniformity) and,
d 4 2 A
— Vi +Vp x2 - VV—vVi =0. (2.60b
at
The local, inviscid conservation of the vorticity underlies many of the similaritie
between 2D fluid dynamics and Vlasov plasma dynamics. In particular, we not

that the equation for an inviscid 2D fluid is just,

(l/)

dr
(for p = Vz([')) which is similar in structure to the Vlasov equation,

df
— =0.
dt
Both state that phase space density is conserved along particle orbits. Hence, frc
Eq.(2.60b), it follows that in two dimensions both energy,

Y 2 , 1 o
:// d‘.\‘%— =// d“.\‘EI\’(/)l‘.

"

o= [[ @2 a2 2|V
:/b/(.\ 5: xil q,‘;‘

together are quadratic inviscid invariants. The existence of rwo conserved qu
tities complicates the construction of the theory of turbulent cascade for
turbulence. As we shall show, the resolution of this quandary is a dual casc
(Kraichnan, 1967): that is, for forcing at some intermediate scale with w
number k s such that kpin < kf < kmax, there is:

(&1

and enstrophy,

)

(i) a self-similar, local enstrophy flux from ks toward viscous damping at high k. Th
called the forward enstrophy cascade;,
(i1) a self-similar, local energy flux from k¢ toward low k and large scale. This is c:

the inverse energy cascade.

Obviously, the forward and inverse cascades must have distinct spectral power
scalings. Also, we remark that energy and enstrophy are each transferred in
directions, toward high and low k. What distinguishes the two cascade rang
that the directions for self-similar transfer differ.

The need for a dual cascade picture can easily be understood from the follo
simple argument (Vallis, 2006). Consider some initial spectral energy E (k. ¢
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E(k)

Fig. 2.15. Energy spectral density E (k) shifts toward lower k (schematic illustra-

. 7 . . 3
tion). As AkZ increases, the centroid k decreases.

distributed over a range as shown by a dotted line in Figure 2.15. This initial
. . . . gl . >
distribution has variance Ak* and centroid wave number &,

, >
A]\—_T /‘d/\(l\ [\)—E(/\) (2.61a)

and ]
k= — [d/\' kE (k). (2.61Db)

4

. . . . . )
Now, it is eminently plausible that the turbulence will act to broaden Ak~ as the
. . . . 2) .
spectrum evolves in time. Thus, we expect that, as time increases, Ak~ will grow,

5
—Ak? > 0. (2.62)
dat

\ o sl
However, we know that the relation [ dk(k — k)YE(k)=Q— (k)" E holds and
that © and E are (inviscidly) conserved, i.e.

Q=0 =42
AR = (k)" (2.63a)
E(t=0)

~ . - “ . - ;. -
Since Q(r = 0)/E(t = 0) is constant, we see that the growth of Ak* (Eq.(2.62))
requires,
0 — X
—k <0, (2.63b)
dt
5o that the centroid of the spectrum must shift toward lower wave numbers. This is
shown in Figure 2.15. This trend is quite suggestive of the inverse energy cascade.
We now repeat this type of exercise for the case of enstrophy. Here, it is conve-
nient to work with scale, not wave number. Thus, for [ = 1/k, we can define the

variance,

5 | =0 ,
Alf = S /d/(l—/) Q). (2.64a)
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where €2 (/) is the enstrophy density, the total enstrophy is given by Q = [ dI (1),
and [ is the enstrophy centroid scale,

- [
| = — / di (). (2.64b)

Note that convergence of the moments of € (/) is assumed a priori, but not proved.
Then the change of the variance is given as,

)

3 ., (1 ‘ 35(1 .
— Al = f— HIl=I1Y QDO Y=—{—= | dEQdD-=(1)}. (2.65:
o «'n{sz./‘( ) ”} m{sz./‘ ©=43) - 2698)

. . 9) . . . .
However, the integral | d//-€2 (I) is just the total energy, which is conserved along
with the total enstrophy. Hence,

A2 =—-=(1)% (2.65b)

X % . . . ‘ ) e
For the range of scales to broaden in time (i.e. dAl=/dr > 0),

2% <0 (2.66)

dat
is required, so the centroid of the distribution of enstrophy density (by scale) must
move toward smaller scale. This is suggestive of a direct cascade of enstrophy to
smaller scale. Thus, we see that the simultaneous conditions of spectral broadening
and inviscid conservation of energy and enstrophy force the dual cascade model. In
this dual cascade scenario, enstrophy is self-similarly transferred to smaller scales
while energy is self-similarly transferred to large scales.

2.3.2.2 Self-similar spectral distribution
Simple scaling arguments for the cascade spectra are then easy to construct. To
describe the cascade spectra, it is convenient to work with the energy density spec-
trum £ (k), so with a factor of k£ for density of states, kE (k) has the dimension
of {'1-3). Hence k” E (k) corresponds to enstrophy density. Spectral self-similarity
leads us to the hypothesis that enstrophy cascades locally, with a rate set by the
eddy-turn-over time ¢ for each &, i.c.,

| v (1) . /2
—— = — = — = k(kE (k))/~. (2.67)

Tcascade Tet /
Then, a scale-independent enstrophy dissipation rate 7 =k"E (k) /Tcascade
requires that

2 /9

(CE (k))'\' - (2.682)
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Fig. 2.16. Mean squared vorticity increases as vorticity isocontours stretch in a
turbulent flow.

which immediately gives the energy spectrum for the (forward) enstrophy
cascade as,
E(k) = n*?k3. (2.68D)

Note that the eddy-turn-over rate in the enstrophy cascade range is constant in &
from Egs.(2.67) and (2.68b). The enstrophy spectrum is given by 2 (k) = k*E (k),
so that equi-partition holds for k€2 (k), according to Eq.(6.68b). The physics of the
enstrophy cascade is successfully described by the sketch in Figure 2.16. This
shows that stretching of iso-contours of vorticity by a turbulent flow necessarily
generates smaller scale structure in these contours, thus producing a net increase

in mean square vorticity gradient <(VV2¢) > The increase is what underlies the

forward enstrophy cascade process. The cascade is ultimately terminated by vis-
cous mixing. The forward cascade of enstrophy in k space is closely related to the
homogenization (i.e. mixing and dissipation) of vorticity in configuration space, to
be discussed later.

The self-similar inverse cascade of energy is correspondingly described, by bal-
ancing the energy dissipation rate € with the flow rate of energy to larger scale, set
locally by the eddy-turn-over rate, i.e. KE (k) /Tcascade = €. This gives the relation,
with the help of Eq.(2.67):

KPE (k)? =, (2.69a)

E (k) = €233, (2.69b)

Of course, the energy cascade spectrum is the same as the K41 spectrum, though
the cascade is toward large scale. The dual cascade is represented by the schematic
drawing in Figure 2.17. Note that the inverse cascade builds up a large-scale flow
from intermediate forcing. The process of large-scale build-up is nicely illustrated
by Figure 2.18, which shows the evolution of the spectrum during a simulation
of 2D turbulence forced at intermediate scale. Ultimately, this flow occupies the
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Fig. 2.17. Schematic of energy spectrum for dual
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Fig. 2.18. Build-up of a large-scale flow in dual cascade (Borue, 1994). Energy
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of log; (k/ky) for three different parameters in simulations.
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largest scale of the system, thus generating a macroscopic shear flow on that scale.
Such large-scale shears can then directly strain the smaller scales, thus breaking
self-similarity and producing strong intermittency in the turbulent flow.
2.3.2.3 Dispersion of particle pairs

The dispersion of particle pairs (i.e. Richardson’s problem) in a turbulent 2D flow
is strongly tied to the dynamics of the dual cascades. In all cases, the disper-
sion of particles separated by distance / is determined by the eddies of that size
(Eq.(2.57a)), so

—l=v().
For the inverse cascade range, i.e. [ > /\'/‘]. Eq.(2.69b) gives v () = €'/31'/3, so,
> ~ et (2.70)

as in K41. Particle pair separation grows super diffusively. For the forward enstro-
— . 7 . .
phy cascade range, [ < & !, we note that the velocity v (1) = (KkE (k))'/? is given

by n'/31, because E (k) = n*/3k—3 holds as Eq.(2.68b). We immediately have,

(I 1/3 -
-l =n''"l. (2.71)

dz

Thus, particle separation / () grows exponentially in time for separation scales
smaller than the forcing scale, but super diffusive growth occurs for scales larger
than the forcing scale. The exponential divergence of particles in the enstrophy
cascade range resembles the exponential divergence of trajectories in a stochastic
system, such as for the case of overlapping resonances between plasma particles

and a spectrum of waves.

2.3.2.4 Long-lived vortices
It is interesting to note that long-lived coherent vortices have been observed
to emerge from decaying turbulent flows, and even in certain forced turbulent
flows. This important phenomenon has long been recognized, but was dramati-
cally emphasized by the seminal work of J. McWilliams and its offshoots. These
studies revealed a two-stage evolution for decaying turbulence, namely:

(i) a fast stage of rapid decay and cascading, as shown in Figure 2.19(a):
(ii) a second, slower stage of evolution by binary vortex interaction. In this stage, vortices
advect and strain each other, merge and sometimes form persisting pairs. An example

of this evolution is shown in Figure 2.19(b).
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27

Fig. 2.19. Vorticity contours in the initial condition (a) and long-time evolution at
a normalized time of 7 = 16.5 (b), where the eddy-turn-over time increases from
0.5 to 2.0 in the decay process. (McWilliams, 1984)

One of the most interesting aspects of this work is that it confirms the intuitively
appealing Okubo-Weiss criterion (Okubo, 1970; Weiss, 1991), which constitutes
a plausible answer (for 2D fluids) to the often-asked question, “What makes a
coherent structure coherent?”

The Okubo-Weiss criterion emerges from an asymptotic expression for the time
evolution of the local vorticity gradient Vp (where p = V2¢ is the local vorticity),
which predicts that

i\7p = \/SE — p2. (2.72)

at
Here, § = 32¢/axay is the local flow shear. The Okubo—Weiss (O-W) criterion
thus states that the evolution of the local vorticity gradient is set by the Gaussian
curvature of the stream function. In physical terms, the O-W criterion states that
when the magnitude of the local shear exceeds the magnitude of local vorticity,
the vorticity gradient is steeper and small scales will develop, as they do in the
enstrophy cascade. If the local enstrophy density exceeds |S [, however, the vor-
ticity gradient will not steepen, and a coherent vortex will simply rotate, without
distortion. Locally, the flow will be stable to the cascade process. The O-W cri-
terion is quite plausible, as it is consistent with the expected natural competition
between shearing and vortical circulation. Comparisons with simulations of decay-
ing turbulence indicate that the O—W criterion successfully predicts the location of
long-lived, coherent vortices, which are, in some sense, stable to cascading in a
turbulent flow. Indeed, when applied to a fully turbulent flow, the O~W criterion
successfully predicts the subsequent emergence and locations of coherent vortices
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X

Fig. 2.20. Geometry of pipe flow. The y-axis is measured from the wall
(perpendicular to the wall) according to the convention.

after the early phase of rapid decay. Thus, the O-W criterion constitutes one phys-
ically plausible approach to predicting intermittency in 2D turbulence.

Here, intermittency refers to breakdown of self-similar transfer by the formation
of stable structures. We should caution the reader that many types of intermit-
tency are plausible. (For instance, another origin of intermittency, which is induced
by the statistical variance of dissipation rate € from its mean (¢), is explained in
Arimitsu and Arimitsu (2001) and Yoshizawa et al. (2003).) A full discussion of

this challenging, forefront problem requires a book in itself.

2.3.3 Turbulence in pipe and channel flows

2.3.3.1 Illustration of problem
We now turn to the interesting and relevant problem of turbulence in pipe and
channel flows, which we hereafter refer to simply as ‘turbulent pipe flow’. The
essence of the pipe flow problem is the calculation of the mean flow profile
Viy) for flow of a fluid with viscosity v through a long pipe with fixed pressure
drop per length Ap/L, assuming no-slip boundary conditions. The geometry and
coordinates (after convention) are illustrated in Figure 2.20.

As we shall see, there are many parallels between the K41 paradigm of homo-
geneous turbulence in a periodic box and the problem of turbulent flow in a pipe.
The study of turbulent pipe flow was pioneered by Ludwig Prandtl in seminal
works published in 1932 (Prandtl, 1932), hereafter referred to as P32. The parallel
between the K41 and P32 problems is summarized in Subsection 2.3.4.

Like K41 turbulence, pipe flow turbulence manifests an element of universality
in its phenomenology. In simple terms, pipe flow turbulence is driven by turbu-
lent mixing of the cross-stream shear of the mean flow dV, (y) /dy by turbulent

Reynolds stress <\"\, V\»>. so that turbulent energy production P is given by:

v (s .
Pras -_<\‘_\,\'\_> — Ve (). (2.73)

dy
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Fig. 2.21. Schematic drawings of turbulent eddies in a cross-section of pipe flow
and the mean velocity profile across the mid-plane.

We see therefore that the turbulence is driven by the cross-stream flux of along
stream momentum. Pipe flow is perhaps the simplest example of flux-driven
turbulence, a ubiquitous paradigm with many applications to tokamaks, solar
convection, etc.

The effective drag on the flow, which opposes the driving Ap/L, results from
turbulent transport to the pipe wall, where the no-slip boundary condition forces
the stream-wise flow to vanish. Thus, turbulent transport transfers or connects
momentum input or drive by pressure drop to dissipation in the viscosity dom-
inated region close to the no-slip boundary. A diagram of this spatial transport
process and its implications for the flow profile is given in Figure 2.21.

2.3.3.2 Viscous sublayer
The Reynolds stress <V\. V_\.> 1s an effective measure of momentum transport to the

wall, or equivalently, the stress exerted on the wall, which we call

Tw=p <‘7_\, ‘7.\'> .

Here p indicates the mass density and Ty, is the stress. Clearly, 7\, is proportional
to Ap/L. Since there is no sink of momentum other than viscous drag at the wall,
the force balance on the fluid requires,

For the turbulent stress near the wall, 7y is constant across the flow, and so we can

define a constant friction velocity,

Ve =+/Tw/ £,
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where the mass density p is taken as constant here for the transparency of the
argument. V, is a characteristic turbulent velocity for a pipe flow. (Note that the
relation V, o« v/Ap/p holds.)

Having defined the characteristic velocity (which is called friction velocity) Vi,
we can immediately identify two characteristic scales and Reynolds numbers for
pipe flow turbulence. One is the viscous sublayer width y,,

(2.74)

which is a measure of the thickness of the viscosity-dominated range near the
wall. In the viscous sublayer, y < yg, the Reynolds number R, = V.y satisfies
the relation R,<1. In order to balance the constant wall stress and satisfy the no-
slip boundary condition at the wall, the flow profile must be linear, i.e. V (y) ~
V.y/ya4. in the viscous sublayer. Of course, the flow further away from the wall is
strongly turbulent, and the Reynolds number computed with the pipe cross-section
length a, R, = V.a/v, is much larger than unity. Indeed, in practical applications,
R, is so large that all vestiges of the (subcritical) instability process, which initially
gered the turbulence, are obliterated in the fully evolved turbulent state.

&

trig

2.3.3.3 Log law of the wall
As with the K41 problem, empirical observation plays a key role in defining the
problem. In the pipe flow problem, numerous experimental studies over a broad
range of turbulent flows indicate that the flow profile has a universal, self-similar
structure consisting of three layers, namely:
(a) the core;ie.y ~ a,
(b) an inertial sublayer; i.e. yg < y < a,
(¢) the viscous sublayer; i.e. 0 < y < yg:

and that in the inertial sublayer, the flow gradient is scale independent, with a
universal structure of the form,

d
il 7,
dy

V(y)=«Vilny. (2.75b)

This logarithmic profile for the inertial sublayer flow is often referred to as the
(Prandtl) Law of the Wall, and is, to reasonable accuracy. a universal feature
of high R, pipe flow. The flow profile and the three regimes are sketched in

= 0.4, is named the von

Karman constant.




‘ 68 Conceptual foundations

|
. —————
U o
|
20 -1
U =(1/0.40n( v5)+5.0 | L
(170.40)In( y"©) _,)'/ "
Ut=
10 - ' i
—— Re,=1020
-== Re. =640
I Re .,»‘—_;.‘)5
| ~-— Re.=180 |
O o eaaanal 4 o s il i v aaanl )
10° 10! 10 y* 10°
Fig. 2.22. Mean velocity of turbulent channel flows normalized by the friction
velocity, U™ = V (y) / Vi as a function of the normalized distance y* = y/yg.

Quoted from Yoshizawa (2005), which compiled the lines, DNS (Abe, 2004) and
circles, observation (Wei and Willmarth, 1989) at R,; =1016. Here, R, is the
Reynolds number defined by use of the friction velocity V.. Viscous flow near the
wall, log law and core profile are observed.

We should mention here that although the logarithmic law of the wall profile
is the best known feature of turbulent pipe flow, it is perhaps more instructive to
focus on the universality of the flow profile gradient dV (y)/dy. Note that the local
gradient is determined entirely by the distance from the wall y (a purely local
parameter!) and the friction velocity V.. In some sense, it is more appropriate to
focus on the flow gradient instead of flow, since the former is determined purely
locally, while the flow at y is affected by physical effects originating at distant
points.

A simple, physically appealing model can be constructed to explain the empiri-
cal law of the wall. The basic ideas of this model are:

(i) turbulence intensity in the inertial sublayer is determined by a local balance between

mean profile relaxation induced by turbulent viscosity v and turbulent dissipation of

fluctuation energy:
(ii) turbulence is characterized locally by a simple velocity, namely the friction velocity

V., and a single length scale /.

Now, turbulence energy E evolves according to a competition between produc-
tion P and dissipation €, so
ad 4
—E =P — ¢, (2.76a)

ot

where

IVioy \ 2 AV \ 2
= VT ( _(‘_)) — V:J < —_ _f ‘] ) . (27()[1)
A Jay
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and

(2.76c¢)

Here [ is the characteristic length scale of the turbulence. Now. empirically we
have dV(,)/dy = V. /y, it follows that,
J—
—F =V,—= - X, (2.764)
at _\‘2 [
Thus, we see that the most direct way to ensure stationarity in the inertial sublayer
is to simply take the characteristic length scale / to be y, the distance from the wall,

l~y, so, vr=Vy.

Note this ansatz ensures scale invariance in the inertial sublayer! The length / ~ y
is often referred to as the mixing length, since by analogy with gas kinetics where
viscosity is given by thermal velocity and mean free path, here eddy viscosity
V = vtlyfp. 801 ~ y may be thought of as an effective mean free path, over which
fluid momentum is mixed by a random walk with root-mean-square velocity V..
In other words, the log law of the wall is based on the picture that the length of
turbulent mixing / is given by the distance from the wall y (the upper bound by the
vortex size in the region between the location y and the wall).

This mixing length model of pipe flow turbulence was first proposed by Prandtl,
and thus goes by the name of the Prandtl Mixing Length Theory. Note that mixing
length theory also immediately recovers the logarithmic profile, since by making

the assumption of diffusive transport,
Ty,
P

2 1S d o
= <\f’\» \,."‘,> = v i -V (y), (2.77a)

d.\'

(note the minus sign is absorbed since y is measured from the wall) and if vy =
V.l = V,y, we have,
0 Vi ——
—V(y)=—. (2.77b)
dy v

2.3.3.4 Approach to self-similarity
It is enlightening to briefly review another even simpler approach to the problem
of the inertial sublayer profile, assuming similarity methods. To this end, one can
formulate the problem by noting that since it is the mean velocity gradient which is
locally determined self-similar and seemingly ‘universal’, we know that the dimen-
sionless function yV. 'V (y) /8y is determined exclusively by the dimensionless
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Table 2.4. Parallel studies in self-similarity

Inertial range spectrum (K41) Pipe flow profile (P32)

Basic ideas

self-similarity in scale self-similarity in space
inertial range spectrum V (/) inertial sublayer profile V (y)
eddy/wavelet mixing ‘slug’ or eddy

K41 spectrum law of the wall

Range

stirring core

inertial inertial sub-layer

dissipation viscous sub-layer

Element

[ — eddy scale Im = y — mixing length
Throughput
¢ — dissipation rate VZ=Tw/p

— wall stress, friction velocity
Rate
1/t () ~ V(I)/I (eddy turn-over) vy =2 ~ Vi /y (vt : eddy viscosity)

Balance

e=VD?*/tl) Vf ~ vpdV(y)/0y

Vi) ~ BB aV(y)/dy ~ V./y — log profile
Dissipation scale length

I = pHhe—1/4 Yd = py!

Fit constant
Kolmogorov constant von Karman constant
Theorem

4/5 law ?

parameters in the problem. Now, since there are two characteristic length scales
in pipe flow turbulence, namely the viscous sublayer scale y; = vV and pipe
cross-section a. the relevant dimensionless function can be written as,
v aV (y) Ya Y
————=F|—=,=). (2.78a)
Vi Oy y a
For the inertial sublayer of a high Reynolds number pipe flow, y/y; > 1 and
a/y > 1. Thus, assuming complete Reynolds number similarity amounts to taking
vi/y — 0and y/a — 0. In this limit,

y dV (y) ]
———— = F (0,0) — const, (2.78b)
V. 0y
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so once again we arrive at the logarithmic ‘law of the wall” profile,
V(y)=«kViny. (2.78¢c)

Thus, we see that Prandtl’s law of the wall emerges from extremely simple argu-
ments of complete Reynolds number similarity and scaling methods. The reader
should note that study of corrections to the law of the wall induced by incomplete
similarity is ongoing and remains an active topic of research.

2.3.4 Parallels between K41 and Prandtl’s theory

The parallel between the K41 and P32 problems has been referred to many times
during the above discussion. At this point, the reader may wish to visit the sum-
mary in Table 2.4, to review the many parallels between the twin studies in
self-similarity which constitute Kolmogorov’s theory of the inertial range spectrum
and Prandtl’s theory of turbulent pipe flow. This table is largely self-explanatory.
It is interesting, however, to comment on one place where a parallel does not
exist, namely, in the last entry, which deals with ‘rigorous results’. For K41 the-
ory, the “4/5 Law’ (Frisch, 1995) is a rigorous asymptotic theorem which links the
dissipation rate €, the length scale /, and the triple moment (8 y3 (/)) by the relation,

<5v3 (1)> = —;—161.

The 4/5 Law, derived from the Karman—Howarth relation, is perhaps the one true
theorem which is actually proved in turbulence theory. Since P32 theory tacitly

assumes
<8V3 (1)> = Vj >~ €y,

it is naturally desirable to know a theorem for turbulent pipe flow, which
corresponds to the 4/5 law. Unfortunately, no such result is available at this time.






